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Numerical self-consistent field theory is used to study the structural characteristics of a polydisperse
polymer brush. We consider the relevant case of a Schulz–Zimm distribution and find that even a small
degree of polydispersity completely destroys the parabolic density profile. The first moment (average
height) of the brush increases with polydispersity, while the average stretching in the brush decreases.
The density profiles of separate chain length fractions in a single polydisperse brush are also strongly
influenced by polydispersity. Short chains are found to be compressed close to the grafting interface,
whereas longer chains have a characteristic flower-like distribution. These longer chains stretch strongly
(stem) when surrounded by smaller chains and decrease their stretching (crown) when only surrounded
by longer chains. In line with approximate analytical models, our numerical exact results show that the
polymer chains in the brush have localized end-point positions (no fluctuations) in strong contrast to
the anomalously large fluctuations in the end-point positions of the homodisperse brush. Despite these
effects, the scaling of average height with grafting density and number average chain length is unaffected
by polydispersity. Many results that we have presented can be understood qualitatively from the
bidisperse brush.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Polymer brushes, densely packed arrays of polymer chains end-
attached to an interface, have been the subject of many experi-
mental and theoretical investigations in the past 30 years [1–3].
There are however significant differences between the theoretical
and experimental investigations of polymer brushes. One is that
most theories assume strong stretching of the polymer chains in
the brush, while it is hard for an experimentalist to achieve
densities high enough for this strong stretching [4]. Another
significant difference is the polydispersity. While it is practically
impossible for an experimentalist to produce a perfectly homo-
disperse polymer brush, almost no theoretical work has been done
on the effect of polydispersity with a realistic size distribution.

Polydispersity in polymer brushes has already received some
attention from the modeling point of view. In particular there has
been some interest in the modeling of the simplest form of poly-
dispersity, a brush containing two chemically identical fractions
with polymers of different length. Approximate analytical self-
consistent field theory has been developed by Milner, Witten and
Cates (MWC) [5] and by Birshtein et al. [6]. In these analytical
theories one typically assumes the complete segregation of end
s).

All rights reserved.
points of the long and short polymer fractions. Although it is known
that end points do segregate, such assumption should be the
outcome of the analysis rather than the input. Another assumption
is that the local stretching of a chain is determined only by the local
chain density. A key result of this approach is the prediction that
the density profile of the short fraction is unaffected by length and
content of long chains (at fixed grafting density). Both sets of
authors also predict that the mixing of long and short chains
increases the entropy of a brush. Comparing their models to Monte
Carlo (MC) simulations revealed differences, mainly attributed to
some overlap of end points of the long and short fractions [7]. For
a uniform distribution of chain lengths as described by MWC the
calculated density profile compares well to MC simulations.

To our knowledge there exists just one analytical SCF study
wherein no a priori assumption is made on the position of end
points. Klushin and Skvortsov [8] used an ingenious trick to extract
information for a polydisperse brush from the known properties of
a homodisperse one. The start of their analysis is the analytical SCF
theory of the homodisperse brush, i.e. the brush described by the
strong stretching approximation. For very long chains we know
that the results are accurate and that for finite chain length there
are shortcomings due to fluctuations of chain conformations
beyond those accounted for in the most-likely trajectories. The
second step in the analysis is to assign a plane inside the brush and
analyze the lengths of all chain parts that reside outside this plane.
This population of chain parts consists of short ones that are less
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strongly stretched and have their free ends not far from the
assigned plane, and longer ones that are more stretched because
the free chain end is further from the assigned plane. As a result
there exists a full set of lengths with corresponding grafting
densities (as evaluated from this reference plane). The third step is
to freeze the plane and take this plane as the grafting surface of the
polydisperse distribution of chain lengths found in step two. All
properties of this polydisperse brush are known. The overall profile,
for example, is parabolic and the local stretching is the same as that
in the homodisperse reference brush. The resulting chain length
distributions consist of many long chains and few shorter chains
and thus, these authors could consider only very small degrees of
polydispersities. One of the main predictions is that the end-point
fluctuations decrease with increasing polydispersity. They also
predict for low polydispersities, independent of the chain length
distribution, that the height H of a polymer brush increases with
polydispersity, i.e. increases with the weight average molar mass
over the number average mass (Mw/Mn), as dH¼ (Mw/Mn� 1)1/2.
Currently, it is unknown whether this law also applies to more
realistic polymer length distributions.

Dan and Tirrell [9] have investigated bidisperse brushes using
a numerical SCF (nSCF) model very similar to the model used below.
In this numerical approach these authors also could account for the
fact that the end-point distributions of the long and short chains
overlap to some extent. They performed a thorough study varying
the fraction and the difference in length of the long and short
polymer end-grafted chains. They found that the longer chains
stretch significantly more than the shorter ones near the grafting
interface and that the density profile of the short chain is influ-
enced by the length and content of long ones. Indeed, this
complication is the reason for the extremely low attention of the
polymer brush community for the effects of polydispersity. There is
a lack of rigorous approaches to this problem. As a result the current
situation is rather unsatisfactory. On the one hand polydispersity is
an inherent aspect of any experimental system but the modeling
community ignores this aspect as much as possible.

Results from neutron reflection have been compared extensively
to nSCF models (using predictions for homodisperse polymers in
a number of papers [10,11]) and are found to compare well. At this
stage we might wonder why such good correspondence was found.
One possible reason for this is that a small polydispersity does not
destroy the expected scaling behavior of the height with the average
chain length and overall grafting density. Much less is known about
brushes with deliberate polydispersity. Kritikos investigated, using
the neutron reflection technique a tridisperse system and analyzed
the results with nSCF and concluded that there exists a segregation
in height and stronger stretching for a long chain surrounded by
smaller chains, very similar as for a bidisperse brush [12].

As stated above, almost no theoretical work has been done on
the effect of a realistic form of polydispersity on a polymer brush.
We found only a single work by Terzis et al. [13] who investigated
using an SCF model a polymer brush with a realistic size distribu-
tion in contact with a polymer melt of chemically equivalent chains.
They show that increasing the polydispersity leads to improved
miscibility between the brush and the polymer melt. This is
a strong indication that polydispersity can have very pronounced
effects on the properties of a polymer brush.

In this paper we investigate the effect of polydispersity on
a polymer brush in a good solvent, again using an nSCF model. For
the polydispersity we use the Schulz–Zimm distribution, a realistic
size distribution often used to describe polymer polydispersities. We
investigate the effect on the overall brush density profiles and on the
structure of a polydisperse brush by studying the density profiles
and end-point distributions of single fractions in the polydisperse
brush. We also present a very simple analytical model for poly-
dispersity based on the Alexander and De Gennes box model.
2. Theory

2.1. Numerical self-consistent field theory

There exists a strong analogy between the path followed by
a Brownian particle and the conformation of a (Gaussian) poly-
mer chain. As a result, there exists a diffusion-like equation to
describe such a polymer system. Polymers with excluded volume
have perturbed (non-Gaussian) conformations and, on a mean-
field level, one can treat this problem by considering a diffusion
problem in an external potential field. Then, in self-consistent
field theory the potential is chosen to be a function of the volume
fraction (dimensionless concentration) of polymer and the
potential assumes the property of self-consistency. This scheme
was invented by Edwards and the corresponding diffusion
equation carries his name. The Edwards diffusion equation needs
to be solved in a particular geometry by specifying the initial and
boundary conditions [14]. Exact analytical solutions, especially
for situations that the polymer molecules are strongly interacting
are not available, only analytical approximations exist.

Numerical solutions for the case that polymers are end-grafted
can be generated only after choices have been made about the
discretisation scheme. Here we follow the approach of Scheutjens
and Fleer (SF-SCF) [15], wherein the polymer segment size
matches the cell size of the spatial coordinates. In this scheme the
conformations of the polymers are described by freely jointed
chains, which have the property of finite extensibility. This means
that no polymer chain that is attached with the first segment to
the wall can have its Nth segment more than N lattice sites away
from the surface. The discrete version of the Edwards equation
reduces to a set of recurrence equations, also known as
propagators.

The propagator formalism can be set up extremely efficient such
that the number of computations for the whole set of polymer
chains is comparable to the evaluation of the volume fraction of the
largest chain in the distribution [16]. As such an efficient scheme
has not been discussed in the literature for end-grafted chains, we
discuss the details of this in Appendix 1. Apart from this technical
issue, there is no additional difficulty as compared to the evaluation
of properties of homodisperse brushes. Details of this [10,17] can
easily be found in the literature and we do not go into more detail
here, apart from mentioning that the inter-chain excluded-volume
effects are accounted for by the segment potentials, which in the
absence of specific interactions are given by u(z)¼�ln(1� 4(z)),
where z is the distance in units of lattice sites away from the
grafting surface, and 4 is the volume fraction of segments. For not
too high volume fractions and good solvents we thus find
u(z) z 4(z).

For homodisperse brushes it can be shown that the potentials,
u(z), are essentially parabolic (u(z)¼ a (A� Bz2)) and thus that
the volume fraction profiles are parabolic. In polydisperse cases
polymers with different molecular weights are present. This
complicates the issue and strong deviations from this parabolic
law are expected. In summary, the key input that is needed for
the execution of the SF-SCF method is to feed the formalism with
a distribution of chain lengths (degrees of polymerization). As
the chain length must remain finite one also has to define the
upper limit of the size distribution by choosing an appropriate
maximum chain length. In Section 2.3 we will go into more
details.

2.2. Polymer length distribution

A function commonly used to represent polymer molecular
weight distributions is the so-called Schulz–Zimm distribution
[18,19]:
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In which P(Ni) is the probability of chains with degree of poly-
merization Ni, Nn is the number average degree of polymerization
and x defines the broadness of the distribution. G(xþ 1) is the so-
called gamma function which for integer values of x is equal to x!. A
nice feature of this distribution is that the parameter x is directly
related to the polydispersity:
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In Fig. 1 we show the Schulz–Zimm distribution for a number of
polydispersities used throughout this paper. As can be seen the
distribution is almost symmetrical at low values of the poly-
dispersities, but with increasing polydispersities the distribution
shifts to a larger frequency of small chains. At the highest poly-
dispersity given in Fig. 1 (Mw/Mn¼ 2) the maximum in the distri-
bution occurs at the lowest chain lengths and there is a continuous
decrease of the occurrence of chains with increasing chain length.
This implies that the number of molecules of length Ni¼ 1 is in fact
larger than any particular polymer length.

Here we follow the strategy presented in Appendix 1 to number
the chains by an index i and assume that chain i has a length N¼ i so
that we can interchange notation. The overall grafting density s is
defined as the number of chains per unit area. The grafting density
per chain length therefore is given by si¼ P(x,Ni)s and the largest
chains are given by NI.
2.3. Parameter settings

When varying the polydispersity, we have implemented that the
number average degree of polymerization, the overall grafting
density and the overall mass are always preserved. Unless specified
otherwise we have considered the Schulz–Zimm distribution with
a maximum chain length of NI¼ 1000. All interaction parameters
are taken as zero so that the polymer segments have no specific
affinity with the surface and the solvent is athermal. In some of the
calculations we consider a special distribution where only two
chain lengths are used (bidisperse brush). In that case the chain
lengths and the grafting densities are specified separately.
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Fig. 1. Schulz–Zimm distribution for different polydispersities, the probability for
length Ni, P(Ni) is plotted (see Eq. (1)).
In the lattice model one typically uses dimensionless quantities,
i.e. concentrations are expressed in volume fractions and the
distances are expressed in lattice units. For conversion to real
concentrations and actual distances it is necessary to choose
a segment length (equal to the lattice spacing). A reasonable value
for this parameter is b¼ 0.5 nm. The chains are grafted to a solid
surface and the solvent is monomeric. The system volume is chosen
large enough so that the outer boundary is well above the brush
height H.

3. Results

3.1. Bidisperse brushes

The exact solutions of the SCF equations for the general case of
a polydisperse mixture are not available and therefore we now turn
our attention to the numerical SCF method of Scheutjens and Fleer.
The simplest form of polydispersity is a mixture of two polymer
fractions with different lengths and equal grafting densities. This
system has already been addressed by a number of studies
[5,6,9,12,20]. We take a somewhat different approach than already
performed studies, instead of changing the length (or grafting
density) of one polymer fraction while keeping the other chain
length fraction constant we change both chain fractions, which
have identical grafting densities, simultaneously. As one chain
length fraction becomes longer and the other chain length fraction
becomes equally shorter, the average chain length, total mass and
grafting density are thus conserved. This has the advantage that all
changes in the overall brush density profile can be attributed
completely to polydispersity and not to any other change in
parameters. This for instance allows us to, for the first time,
investigate the effect of bidispersity on the average stretching of the
chains in the brush. Another difference with earlier studies is that
we not only investigate cases were there is a large difference
between the long chain fraction and the short chain fraction, but
also cases were the chain length fractions differ only a few mono-
mers in length. We present our results in Fig. 2 which shows the
change in the overall volume fraction profiles of such bidisperse
brush upon an increasing disparity between the lengths of the two
fractions. In this graph we conserved both the total grafting density
and the total mass.

In Fig. 2a we demonstrate how the increasing differences
between the two polymer fractions influence the overall brush
profile. Indeed, for small differences, the profile does not deviate
much from that of a parabolic profile of a monodisperse brush. For
larger differences, however, the profile resembles that of two
parabola one on top of the other, and the height of the brush as
judged from the fact that the overall volume fraction extends to
larger z-values increases with increasing chain length difference.

In Fig. 2b we show the volume fraction profiles of the two
separate fractions as well. In this graph the profile of the smaller
chain is dotted, and the profile for the longer chain is the solid line.
As the grafted amount is fixed s1N1þ s2N2¼ s(N1þN2)/2¼10, the
integral of the two profiles is conserved. Important is that even
though the total brush density is not influenced much by small
differences, the separate contributions are strongly affected by
small length differences. A length difference of 10 monomers
(N1¼95 and N2¼105) is enough to reduce the volume fraction of
the long polymer close to the grafting interface by 25%. The
concentration of the short fraction increases by a similar amount.
The shape of the density profile of the short polymer resembles
a parabolic profile in all cases. The profile of the long chains shows
a flat region when surrounded by much small chains and after that
an increase and then a parabolic-like decrease. This profile indi-
cates a strong stretching of the longer chains when surrounded by
much of the smaller chains. Such result was already shown by Dan
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and Tirrell [9]. This is however a rather qualitative result. To exactly
determine how much more the long chain stretches compared to
the short chain at a certain position in the brush one can calculate
the local stretching as a function of z. Results of such a calculation
are given in Appendix 2 that confirm the qualitative prediction.

The end-point distribution 4e(z) (see Appendix 1 Eq. (A4)) plays
an important role in polymer brush theory (see also Appendix 2, Eq.
(A7)). The interesting issue here is that for the homopolymer brush
the end points are distributed throughout the brush. Indeed, the
end-point distribution grows approximately linearly with the
distance from the grafting surface and only at the periphery of
the brush the end-point distribution suddenly drops to zero. Such
wide distribution of the end points manifests anomalously large
fluctuations present in the homopolymer brush. The end-point
fluctuations are proportional to the chain length. With this in mind
it is appropriate to investigate how the end points are distributed in
the polydisperse brush, and we will begin this investigation by
looking at these distributions in the bidisperse brush.
In Fig. 3a we elaborate on the end-point distribution of the
separate fractions in the same bimodal brushes already discussed in
Fig. 2. As could be anticipated from the overall profiles, with
increasing length difference of the two fractions, we observe a clear
increase in the segregation of chain ends. A difference of 20
segments (N1¼90 and N2¼110) is enough to reduce the volume
fraction of end points of the long fraction to almost zero close to
grafting interface. As expected the segregation is strongest for the
largest difference in length. Indeed, the region where one finds
many end points of the short chains is depleted with the end points
of larger ones. The inverse is true of course as well, but this is less of
a surprise. Clearly the fluctuations of end points of chains of
a particular length are strongly suppressed. Below, we will return to
this in more detail.

We can use the end-point distribution to evaluate the average
stretching of the chain as a whole. This is done by defining the
height He of the chain by the first moment over the end-point
distribution and normalizing this height by the degree of
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polymerization Ni. The first moment (or average height) of fraction i
of component x is given by

Hx;i ¼
Xz¼Ni

z¼1

z4x;iðzÞ
� Xz¼Ni

z¼1

4x;iðzÞ (3)

The normalized average stretching He/Ni (the average stretching
per monomer) is shown in Fig. 3b for both the short and the long
fractions. For the long fraction the average stretching increases
when going to small length differences and then decreases again
for larger length differences. The total average stretching is deter-
mined by two parts of the brush, the part in which small chains are
present and the part where they are not present. In the first part the
chains of the long fraction stretch stronger (this decreases
the conformation entropy), to allow more segments in the part of
the brush where no short ones are present (increasing the confor-
mation entropy). In the second part the chains of the long fraction
stretch less strong as the polymer density in the outer region is
relatively low. This causes the maximum in average stretching. The
stretching of the short chains, however, decreases monotonically to
a plateau value with increasing length differences.

More importantly the average stretching of the chains, which is
also plotted in Fig. 3b decreases slightly with increasing size
difference. This very clearly points to the driving force for the large
changes in the individual profiles. With increasing size difference
there is more freedom (compared to a monodisperse brush) to
distribute the stretching of the chains as favorable as possible
(reducing the entropy losses of the strongly stretched chains). We
recall that even though the average stretching is reduced, we find,
completely in line with earlier investigations of bimodal brushes
[9], that with increasing differences between the long and the short
fractions, the height of the brush increases.
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Fig. 4. (a) Overall volume fraction 4(z) profile for brushes with increasing poly-
dispersity as indicated. Nn¼ 100, s¼ 0.01, polydispersity with Schulz–Zimm distribu-
tion. Cutoff chain length NI¼ 1000. (b) The corresponding overall distribution of end
points 4e(z).
3.2. Polydisperse brushes with a realistic size distribution

Predictions for the structure of polymer brushes with an
experimentally relevant chain length polydispersity are not found
in the literature. This is remarkable as the effects of polydispersity
are both large and non-trivial. We will attempt to rationalize the
results for polydisperse brushes from the knowledge collected from
the analysis of the bidisperse brush.

The first result is, once again, the overall volume fraction profiles
of polydisperse brushes. In Fig. 4a we show a set of such graphs for
systems with increasing, but still very low, levels of polydispersity.
For comparison the homodisperse brush is also presented (most
concave, the so-called parabolic profile). As explained in Section 2,
we have chosen for the Schulz–Zimm distribution, a size distribu-
tion commonly used to describe experimental samples. As can be
seen in Fig. 4a, polydispersity has a strong effect on these profiles,
even for polydispersities considered low from a synthetic point of
view. Upon going from a polydispersity of unity (homodisperse
brush) to a polydispersity of Mw/Mn¼ 1.1, the profile changes from
a convex to a linear profile. At higher polydispersities the profile
becomes completely concave. Furthermore, the height of the brush,
as judged from the distance away from the surface where the
volume fraction of the polymer units remains above a detection
limit, increases significantly with increasing polydispersity. At
a polydispersity of 1.1 the height of the brush (defined as the
distance where the polymer concentration drops below 1% of the
highest achieved density) increases with regard to the homo-
disperse brush by w30%. At a polydispersity of 2 the increase is
about 120%. This increase in height is depicted in Fig. 5 and is
discussed there.

In Fig. 4b we show the overall end-point distributions of the
brushes presented in Fig. 4a. As explained above, in a homodisperse
brush there exists a maximum in end-point distribution at the edge
of the brush. With increasing polydispersity this maximum moves
closer and closer to the grafting interface, even though the overall
height of the brush increases. The shift of the maximum of the
end-point distribution towards the surface and the gradual growth
of the overall brush height are typical polydispersity effects that
can be traced to the details of the polymer length distribution. As
shown in Fig. 1, the Schulz–Zimm distribution increases the
number of small chains and has fewer large chains, with increasing
levels of polydispersity. This causes the increase of chains’ ends
close to the grafting interface. As in the bidisperse brush, we can
deduce the average stretching of the chains in the polymer brush by
the average positions of the end points. The average height (first
moment) of the end points is shown in Fig. 5.

In Fig. 5 the relative height is shown as a function of poly-
dispersity. Here we use three different definitions of the brush
height. The first ‘‘end’’ of brush, is defined as the distance where the
polymer concentration drops below 1% of the highest achieved
density, and is intended to describe the height where the brush
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ends. As can be seen, the effect of polydispersity on this is large, the
brush height more than doubles when comparing a monodisperse
brush with a brush of Mw/Mn¼ 2. However, this definition of the
brush height is rather arbitrary, changing the above discussed 1% to
a different value, such as 0.1%, has a large effect (the lower this
percentage, the stronger the height increases with increasing
polydispersity).

The arbitrary choice for the end of brush definition also makes it
hard to compare these results to the prediction of Klushin and
Skvortsov [8] (see Section 1), even more so as their definition for
the end of a brush is different from the one we use. In aSCF theory
the end of a brush is defined as the height where the density goes to
zero, a well defined point in aSCF theory as only the most probable
conformation of a chain is taken into account. In nSCF theory all
possible conformations are taken into account which makes it
impossible to use the aSCF definition as this would always give the
contour length of the longest polymer (there is always a very slight
possibility that this chain is completely stretched, thus the density
goes to zero at the contour length). Still, we can say that the
prediction of Klushin et al. compares well with our (arbitrary)
definition. Indeed, the prediction shows a strong increase in height
for low polydispersities and a lower more linear increase in height
for higher polydispersities, very similar to our calculated end of
brush and also similar to our other definition of the height, that is,
the first moment over the overall volume fraction profile.

The first moment, or average height (see Eq. (3)), is a far more useful
definition of brush height, and is also shown in Fig. 5. Wijmans et al.
[17] used this definition of height to compare aSCF and nSCF polymer
brush theory. The definition is not arbitrary and has the large advan-
tage that it can be experimentally determined by reflection techniques
such a neutron reflection and ellipsometry. This average height of the
brush is also strongly influenced by polydispersity. At a polydispersity
Mw/Mn¼ 1.1 of the brush height increases 12% compared to a mono-
disperse brush, at a polydispersity of Mw/Mn¼ 2 the height has
increased 60%. Measuring the average height as a function of poly-
dispersitycould be a method to prove the huge effects of polydispersity
on polymer brushes as demonstrated in this paper.

The final definition of height used in Fig. 5 is the first moment of
the end points. As was discussed for the bidisperse brushes, the first
moment of end points is directly related to the average stretching.
Thus, in Fig. 5 we observe that the average stretching at Mw/
Mn¼ 1.1 is 7% lower compared to that of the monodisperse brush.
For Mw/Mn¼ 2, the average stretching is even 22% lower. This
reduction of stretching was earlier also observed for bimodal
brushes as discussed above and can be explained in exactly the
same way. With increasing polydispersity there is more freedom
(compared to a monodisperse brush) to distribute the stretching of
the chains as favorable as possible.

In this paper we only show results for polydispersities up to
a value of Mw/Mn¼ 2 as calculated with just a single distribution
function (Schulz–Zimm). In a realistic macromolecular system
however, the polydispersity might be much higher and/or the
distribution function might be different. We have also investigated
higher polydispersities (results not shown, up to Mw/Mn¼ 10) and
find that the trends reported here for polydispersities between Mw/
Mn¼ 1 to Mw/Mn¼ 2 continue. Thus with increasing polydispersity
the height of the brush increases while the average stretching
decreases. For these high polydispersities the shape of the density
profile is similar to the concave profile that was found for Mw/
Mn¼ 2 (Fig. 4), the higher the polydispersity the more concave the
profile becomes. Furthermore we have also investigated two other
distribution functions (Gaussian distribution and uniform distri-
bution). We found for these distributions exactly the same trends as
a function of polydispersity as for the Schulz–Zimm distribution
although for a given polydispersity there are small differences in
the brush density profiles of the different distributions. We believe
that the question of the distribution function will become more
relevant when good experiments on the effects of polydispersity
become available, and can be compared to the model results.

In the above section we predicted a large effect of polydispersity on
the height and the density profile of a brush. No experimental
evidence exists for these large effects. Indeed, it would be interesting
to set up such experiments. Most experimental studies investigating
polymer brushes have focused on investigating height as a function of
the average degree of polymerization (Nn) and the grafting density (s)
[22,23]. Results have then be compared to the scaling prediction from
Alexander and de Gennes (AdG) [24,25]: H w Nns1/3. This scaling law
was derived from a so-called box model (in which all polymers are
assumed to stretch exactly the same amount) but is also found for
more sophisticated models like aSCF and nSCF [1,17]. The experi-
mental results were found to be in agreement with this scaling law
although polydisperse brushes were used. It is therefore interesting to
look at the effect that polydispersity has on the exponents for the AdG
scaling law. In Fig. 6 we show the results of the determination of these
exponents for different polydispersities. The exponents were deter-
mined by fitting the average height of a number of average polymer
lengths (Nn¼ 100, 200, 400, 800) and a number of overall grafting
densities (s¼ 0.05, 0.1, 0.2, 0.4). As can be seen in Fig. 6, the scaling
exponents are almost independent of the polydispersity. This is
a surprising finding if we take into account the large effects that
polydispersity has on the brush density profile. The scaling exponent
for Nn is for all polydispersities slightly lower than the predicted
exponent (a¼ 1). We believe this is due to the slight depletion inter-
action between the polymer and the wall, which slightly increases the
average height. As this effect is relatively large for small Nn, the scaling
exponent is slightly smaller than1. The scaling exponent for s (a¼ 1/3)
is almost exactly the same as the predicted exponent. These results
compare well to the fact that experimental results in which poly-
disperse polymer brushes were found to be consistent with scaling
exponents as predicted for monodisperse brushes.

3.3. The internal structure of a polydisperse brush with a realistic
size distribution

Up till now we have focused on the effect of polydispersity on
the brush as a whole. However, as observed with the bidisperse
brush, the effects on the internal structure of the brush were even
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more drastic than the changes on the overall density profile. To get
similar information for the internal structure of a polydisperse
brush, we focus on one case, namely the polydispersity Mw/
Mn¼ 1.1. Even for such relatively low degree of polydispersity there
is a problem in presenting the data because the grafting density for
different chain length fractions is very different. Therefore, the
density profiles shown in Fig. 7 have been normalized by siNi, the
total amount of each fraction, to adjust for these large differences in
mass of the different fractions. As a result all the distributions in
Fig. 7 have the same integral. As anticipated we observe strong
similarities with the effects that were discussed for the bidisperse
brush. Again, there is a segregation of the different polymer chains
based on length. Of course the shortest chains are located the
closest to the surface and the longer ones are further away from the
surface. However they do not assume the ‘normal’ distributions as
in the equivalent homopolymer brush cases. Indeed, the short
chains appear more compressed and the longer ones assume the
characteristic flower-like conformation with a stem (with homo-
geneous density profile, indicated the strong stretching) and
a crown (with increasing density profile, indicating less strong
stretching).

In Fig. 7b we show that the end points of different lengths are
completely segregated based on chain length. The same normali-
zation is used as in Fig. 7a, however the end-point distributions
were also multiplied by Nn to give the same scale as in Fig. 7a. One
remarkable observation from Fig. 7b is that the different chain
lengths show very similar width of the end-point distribution,
indicating that the fluctuations become independent of the chain
length. This is a remarkable result especially when we recall the
result for the homodisperse brush which features anomalously
large fluctuations. Grouping chains of different lengths into ‘‘bins’’
and thus reducing the number of chain fractions to the number of
bins has corresponding effects on the fluctuations of end points in
each bin. The fluctuations then scale with the bin size. Thus
reducing the polydispersity to just one bin (monodisperse case) we
retrieve the fluctuations to be of order N.

In Fig. 8 we show the average stretching of the different
fractions in a polydisperse polymer brush. Large differences in
stretching are found for the different fractions, the fraction with
length Ni¼ 150 stretches almost twice as much as the fraction
with Ni¼ 50. Long chains tend to have a stronger stretching than
short chains up to a certain length. In the brush it is favorable
for the longer chains to stretch further and for the short chains
to fill this ‘‘gap’’. This has already been observed in a bidisperse
brush with two chemical identical polymers of different lengths
(see above), the shorter chains are pressed towards the wall,
whereas the longer polymers stretch stronger away from the
wall. For the longer lengths however, stretching decreases as
these chains reach the outer part of the brush where the poly-
mer density is lower. It is also seen that the shortest chains
(smaller than Ni¼ 40) have an increased stretching compared to
Ni¼ 50. We attribute this to slight depletion interaction between
the polymer chain and the wall causing a slightly stronger
stretching. This effect is in principle rather small, however, it is
large enough to influence the average stretching of these short
polymers.
3.4. A box model for polydispersity: a stack of boxes

From the numerical SCF calculations presented above, we have
gained detailed insight into the effect of polydispersity on
a polymer brush. Polydispersity strongly affects the density
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profile, the brush height, leads to segregation of end points, but
does not affect the scaling exponents of average height with the
degree of polymerization and the grafting density. An interesting
question is then if one could use some outcomes of our nSCF
model as input to create a much simpler model describing the
effects of polydispersity. Alexander and de Gennes used a box
model [24,25] as a simple description for a polymer brush. In that
model all end points are assumed to be in the same plane above
the grafting interface and thus all polymers are assumed to
stretch exactly the same amount. For the description of a poly-
disperse brush we propose a stack of boxes (SOB) model. This
model is worked out in Appendix 3, but a short explanation is
given here.

In the SOB model we assume that all end points of polymers
with the same length are in the same plane above the grafting
interface. However, as we take into account polymers of different
lengths we use a stack of boxes, with a number of boxes equal to the
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as indicated as calculated using an SOB model. Nn¼ 100, s¼ 0.1, polydispersity with
Schulz–Zimm distribution.
number of different chain length fractions. The first box (at the
grafting interface) contains all chain length fractions. The second
box contains all chain length fractions except the smallest. The
third contains all chain length fractions except the smallest two,
etc. This continues till the last box which only contains the longest
chain length fraction. Thus every box has its own local grafting
density determined by the number of chains in all the chain length
fractions included in that box. Each box also has a local chain
length, which is equal to the length of the smallest chain length
fraction in that box minus all the chain lengths of lower boxes. In
this way, the sum of all local chain lengths (of all boxes) is the
length of the longest fraction. As every box has a local chain length
and a local grafting density, we can calculate properties such as its
height, its density and its position z for every box. In this model the
local chain stretching is only determined by the local chain density
and we ignore that in reality the local chain stretching is also
determined by the chain length N. This model is worked out in
Appendix 3. The results of this model for the same parameter
settings as in Fig. 4 are shown in Fig. 9.

When comparing the results of the stack of boxes model with
the results of the nSCF calculations we see that the SOB model gives
qualitatively the same results. The density profile shifts with
increasing polydispersity from the Box profile, to a more parabolic
profile, at higher polydispersity to a more linear decrease and at the
highest polydispersity to a completely concave profile, resembling
an exponential decrease.

In Fig. 10 we make a more quantitative comparison between the
SOB model and the nSCF model, by showing the calculated relative
heights as a function of polydispersity. The SOB model predicts, in
agreement with the nSCF model, all large increase in first moment,
or average height, as a function of polydispersity. However, espe-
cially at low polydispersity this relative increase in height is
underestimated. An explanation for this is presented in the same
picture; the SOB model overestimates the decrease in average
stretching, compared to the nSCF model thus leading to a lower
average height. As discussed, with increased polydispersity there is
more freedom (compared to a monodisperse brush) to distribute
the stretching of the chains as favorable as possible. However, in the
box model the increase of polydispersity provides the brush with
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an extra form of freedom, namely the distribution of free ends
through the entire brush. In a monodisperse brush, as described by
the box model, all free ends are assumed to be in the same plane.
With increasing polydispersity the free ends are spread throughout
the brush, which leads to a strong reduction in stretching. In the
nSCF model, the free ends are already spread throughout the whole
brush in the monodisperse case. Therefore the nSCF model shows
a much lower reduction is stretching than the SOB model.

The SOB model gives qualitatively the same results as the nSCF
model and as such well describes the trends of polydispersity. As
box models can be easily extended to investigate particle adsorp-
tion in polymer brushes (for example [21]) we believe that the SOB
model could well be used to investigate the effect of polydispersity
on the adsorption in polymer brushes.
4. Conclusions

A detailed investigation for a polymer brush is given on the
effect of polydispersity with a realistic size distribution. The
numerical SCF model results show that polydispersity strongly
affects the density profile of a brush and that with increasing
polydispersity the density profile changes from parabolic to linear
to concave, the concave resembling an exponential decrease in
density. Also the average height of the brush increases with
increasing polydispersity. Going from the monodisperse case to
Mw/Mn¼ 1.1 increases the average height by 12%, going to Mw/
Mn¼ 2 increases the average height by 60%. We believe that such an
effect could well be experimentally determined if one would have
corresponding polymer brushes with a significant difference in
polydispersity. The average stretching of the brush is found to
decrease with increasing polydispersity. With increasing poly-
dispersity there is more freedom (compared to a monodisperse
brush) to distribute the stretching of the chains as favorable as
possible. Despite these large effects of polydispersity, the exponent
with which the average height scales with the grafting density and
the degree of polymerization of the brush are unaffected by
polydispersity.

The internal structure of the brush is even more radically
influenced by polydispersity. A schematic depiction of our
proposed structure of a polydisperse brush is given in Fig. 11.
There is a segregation of the different polymer chains based on
length. Short chains are compressed close to the grafting inter-
face while the longer ones assume a characteristic flower-like
conformation with a stem (strong stretching) when surrounded
by smaller chains and a crown (less strong stretching) when
surrounded by longer chains. The longest chains have the same
conformation with the stem when surrounded by smaller chains
and the crown at the end of the brush. The end points of
different lengths are completely segregated based on chain
length. Different chain lengths show very similar end-point
fluctuations, indicating that the fluctuations become indepen-
dent of the chain length. This is a remarkable result especially
when we recall the result for the homodisperse brush which
features anomalously large fluctuations. The chains in the poly-
disperse brush have anomalously small fluctuations.

Most of the effects observed for polydisperse brushes can
also be observed and understood when looking at the simplest
form of polydispersity: bidispersity. With increased bidisper-
sity we also observe an increase in average height, a decrease
in average stretching and the compression of the short chain
fraction and the flower-like distribution for the long chain
fraction.

The results of a much simpler model based on the well-known
concept of the box model compare well to the nSCF model,
although the reduced average stretching as a function of increased
polydispersity is somewhat overestimated. This model, in which
we describe a polydisperse brush as a stack of boxes, might prove
useful when investigating the uptake of particles in a polydisperse
brush.
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Appendix 1. The SF-SCF formalism for end-grafted
polydisperse polymer systems

Here we follow the approach of Roefs et al. [16]. Polymer chains
of type i¼ 1, ., I have a degree of polymerization Ni, ranked in
increasing values of the chain lengths. This means that NI is the
largest one. For simplicity we will assume that chain i has a degree
of polymerization equal to the chain ranking number, i.e. Ni¼ i, so
that there exists one normalization per length. For given poly-
dispersity the probability Pi of a chain i is known. Let the overall
grafting density be given by s, then the grafting density of a chain of
type i is given by si¼ Pis. Each chain has segment ranking numbers
s¼ 1, ., Ni, where it is understood that segment s¼ 1 is positioned
at the first non-grafted segment just next to the surface, i.e. at z¼ 1.
Here we assume that all polymers are composed of the same
segment type and that just one segment potential exists, given by
u(z). This segment potential is used in the Boltzmann weight
G(z)¼ exp� u(z)/kBT. We split up the formalism in a forward and
a backward propagator. The forward starts with segment number 1
with the end-point distribution G(z,1)¼G(z)d(z,1), where d(z,1)¼ 1
when z¼ 1 and zero otherwise. The recurrence relation reads for
a 6-choice cubic lattice

Gðz; sÞ ¼ GðzÞ½Gðz� 1; s� 1Þ þ 4Gðz; s� 1Þ þ Gðzþ 1; s� 1Þ�=6

¼ GðzÞhGðz; s� 1Þi ðA1Þ

which defines the angular brackets as a three layer average. Eq. (A1)
is performed for each coordinate z and all segments up to s¼NI. Let
us, for purposes of normalization obtain the single chain partition
function Qi for chain i:

Qi ¼
XNi

z¼1

Gðz;NiÞ (A2)

Using this single chain partition function we can find the normali-
zation Ci for chain i:
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Ci ¼
si

Qi
(A3)

It is understood that when a particular chain length j is absent
Cj¼ 0.

From Eqs. (A1) and (A3) we now can already identify the volume
fraction profile of all chain ends, which we denote by 4e,i(z):

4e;iðzÞ ¼ CiGiðz; iÞ (A4)

To evaluate also the distribution of the other segments we need
a backward propagator. This propagator is somewhat more
complicated because we are going to add contributions for all chain
lengths in this operation together. For this the end-point distribu-
tion Gðz; sjN � sÞ is introduced, which is the total statistical weight
of all conformations that start with free end and arrive at segment s
at coordinate z. Obviously, only the chains that are longer or equal
than s can contribute to this end-point distribution and this is
expressed behind the vertical bar. We start the propagator by the
end of the longest chains, i.e. s¼NI and write
Gðz;NI jN � NIÞ ¼ CNI

GðzÞ for all z (there is no constraint). The
backward equivalent of Eq. (A1) is

Gðz; sjN � sÞ ¼ GðzÞhGðz; sþ 1jN � sþ 1Þi þ CNGðzÞ (A5)

which is performed NI times. The overall volume fraction profile is
now easily computed by

4ðzÞ ¼
XNI

s¼1

Gðz; sjN � sÞGðz; sÞ
GðzÞ (A6)

To compute volume fraction profiles for a sub-fraction of the chains
one can use the classical method by computing the volume fraction
of each chain length separately.
Appendix 2. Local chain stretching

In analytical brush theory for monodisperse brushes, as
developed by Zhulina et al. [26] and Milner et al. [27], local chain
stretching plays an important role. This is exemplified in the
analytical description for the free energy of a polymer brush [17]

A
LkT

¼ 3
2b3

Z H

0
dz04eðz0;NÞ

Z z0

0
dzEðz; z0;NÞ þ 1

b

Z H

0
f ½4ðzÞ�dz

(A7)

Here A/kT is the dimensionless free energy, L is the total surface
area, b is the segment size (equal to the lattice spacing). The second
term of this equation accounts for the free energy of mixing of the
grafted chains with other molecules in the system. f[4(z)] being the
free energy density of mixing, which depends on 4(z). However, we
focus on the first term of this equation, which represents the
contribution from the elastic chain stretching in the brush layer. In
this term E(z,z0,N) gives the local stretching of a chain at a give
distance from the grafting interface z and for a give position of the
end point z0 (z0 > z). Thus the stretching function E(z,z0,N) deter-
mines the position of every segment for a given end-point position.
For homodisperse brushes the stretching function is given by

Eðz; z0;NÞ ¼ p
2N

�
z02 � z2

�1=2
(A8)

As can be seen, this function leads to a parabolic profile. When
depicting this stretching function, it is convenient to plot E(z,z0,N)2

as a function of z2.
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Fig. 12. The squared local chain stretching for a given end-point position E2(z,z0 ,N) for
the long chain in bidisperse polymer brushes as described in Fig. 2 as a function of the
squared distance.

The local stretching can also be determined in numerical SCF
calculations. For this we rank the chain segments s¼ 1,., Ni, where
segment s¼ 1 is positioned at the first non-grafted segment just
next to the surface, i.e. at z¼ 1. We then calculate the density profile
for a given rank number and given end-point position and chain
fraction 4i(z,sjz0,Ni). From this we can calculate the first moment (or
average height) of the given segment s

hzis¼
Xz¼Ni

z¼1

z4iðz; sjz0;NiÞ
,Xz¼Ni

z¼1

4iðz; sjz0;NiÞ (A9)

For given z0 and Ni, we can plot CzDs as a function of s, and compute
dCzDs=ds and thus

Eðz; z0;NiÞ ¼ Eðhzis; z0;NiÞ ¼
dhzis

ds

����
hzis
¼ hzis�hzis�1

1

����
hzis

(A10)

In Fig. 12 we show the squared stretching function as deter-
mined by nSCF for a monodisperse brush and three corresponding
bidisperse brushes. As can be seen, the squared local stretching for
a monodisperse brush indeed gives a linear profile (except close to
the wall due to the small depletion interaction between the grafting
interface and the polymer chains). Extrapolating this linear profile
to z¼ 0 gives a squared local stretching of 0.18, identical to what
one can calculate from the analytical equation (Eq. (A8)) (N¼ 100,
z0 ¼ 27).

For bidisperse brushes the squared local chain stretching (of
the long chain fraction) shows a linear dependence until at
a certain z the slope changes. The distance z where the kink is
observed depends on the length of the small chain fraction; the
longer the small chain fraction the further away the kink is.
The larger the difference between the long and the short chain,
the more pronounced the kink is. The observation that the
squared stretching function of the long chain in a polydisperse
brush consists of two linear parts with different slopes could be
very useful when developing analytical theory for bi- and poly-
disperse brushes.
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In Fig. 13, the local chain stretching of a long and a short chain in
the same bidisperse brush is compared. This shows very clearly that
close to the grafting interface the long polymer is stretched much
more strongly than the short polymer. At z¼ 7, the local chain
stretching of the long chains is twice that of the short chains. The
squared local stretching of the short chain follows a linear profile as
such its density profile will be parabolic. There is only a slight
difference between the local stretching of the short chain in the
bidisperse brush and a corresponding monodisperse brush (dotted
line). This is unexpected as in Fig. 2b we have seen that the short
chain fraction becomes more compressed. This stretching function,
however, is only for all chains with a given end-point position
z¼ 14, which is close to the end of the short chain fraction density
profile. In the bidisperse brush most short chains are compressed,
however the few who stretch to z¼ 14 stretch somewhat more
than they would in a monodisperse brush. Due to the compression
of other chains they are somewhat pushed out of the area with
a higher chain density leading to a slight increase in stretching.
When we compare the squared local stretching of the long chain in
the bidisperse brush with the squared local stretching of its cor-
responding monodisperse brush, there is a large difference when
the long chain is surrounded by short chains in the bidisperse
brush, above the short chain fraction the stretching functions are
very similar.

Appendix 3. A quasi-analytical box model for the
polydisperse polymer brush: the stack of boxes model

The simplest model for a homodisperse polymer brush is one in
which one assumes that all the polymers in the brush have the
same stretching and thus that all end points are at the same
distance from the grafting interface. This so-called box model was
first used by Alexander and de Gennes [24,25] and yielded for
uncharged polymers brushes to simple scaling laws for, e.g. the
brush height. Using a Gaussian model, one can write a free energy
F(H)¼ E� TS as being composed interaction part E w vsN2/H,
where v is the second virial coefficient (which is unity in good
solvent, and will be omitted here), and a loss of entropy – TS w H/N2

that originates from the (homogeneous) stretching of the chains.
Optimization of the free energy with respect to the height H gives
the well-known result
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HwNs1=3 (A11)

Although the assumption of equal stretching of all polymers is
a serious oversimplifications, the same scaling law was also found
for more sophisticated models like aSCF and nSCF [1,17]. Advan-
tages of using box models are that they are simple and can easily be
extended, e.g. to investigate adsorption in polymer brushes [21].

A polydisperse brush cannot be described by a model that uses
just one single box, as one would need to assume that polymers of
different length stretch to the same height, and thus that short
chains are extremely extended and long ones are then compressed.
One can however describe a polydisperse brush by a stack of boxes.
One simplistic generalization is found when there are as many
boxes as there are chain length fractions. The first box (at the
grafting interface) contains all chain length fractions. The second
box contains all chain length fractions except the smallest. The
third contains all chain length fractions except the smallest two,
etc. This continues till the last box which only contains the longest
chain length fraction. Thus every box has its own local grafting
density determined by the number of chains in all the chain length
fractions included in that box. Each box also has a local chain
length, which is equal to the length of the smallest chain length
fraction in that box minus all the chain lengths of lower boxes. In
this way, the sum of all local chain lengths (of all boxes) is the
length of the longest fraction. As every box has a local chain length
and a local grafting density, we can calculate for every box its height
by implementation of Eq. (A11). If every chain length fraction has
a width of one monomer (and thus all boxes have a local chain
length of one) the height of the total brush is then given by

Hw
XNI

N¼1

 
s�

XN

i¼1

si

!1=3

(A12)

In this approach we thus assume that all polymers of the same
length stretch exactly the same amount and that the local
stretching of a single polymer is only determined by local polymer
volume fraction and not by the stretching of the remainder of the
chain. Note that these assumptions are very similar to the
assumptions made by MWC and BZ [5,6] as they assume complete
segregation of end points. For a system with many different poly-
mer lengths, this assumption leads to extremely narrow distribu-
tions of end points of polymers with the same height and thus
almost the same stretching. Also, MWC and BZ take the point of
view that the stretching of the fraction of small polymers is not
influenced by the large ones, i.e. that the local stretching is only
determined by the local volume fraction. From Eq. (A12), it is
possible to extract the local polymer volume fraction by dividing
the local ‘‘grafting density’’ by the local height increment. Results of
the model are shown in Figs. 9 and 10.
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